Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 927017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159837

RESUMO

The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 µM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.


Assuntos
Polimixina B , Polimixinas , Antibacterianos/química , Antibacterianos/farmacologia , Antibióticos Antineoplásicos , Bactérias , Bactérias Gram-Negativas/metabolismo , Humanos , Klebsiella pneumoniae , Polimixina B/metabolismo , Polimixina B/farmacologia , Polimixinas/química , Polimixinas/metabolismo , Polimixinas/farmacologia , Pseudomonas aeruginosa , Proteína A Associada a Surfactante Pulmonar
2.
Elife ; 92020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369020

RESUMO

Antibiotics are widely used in the treatment of bacterial infections. Although known for their microbicidal activity, antibiotics may also interfere with the host's immune system. Here, we analyzed the effects of bedaquiline (BDQ), an inhibitor of the mycobacterial ATP synthase, on human macrophages. Genome-wide gene expression analysis revealed that BDQ reprogramed cells into potent bactericidal phagocytes. We found that 579 and 1,495 genes were respectively differentially expressed in naive- and M. tuberculosis-infected macrophages incubated with the drug, with an over-representation of lysosome-associated genes. BDQ treatment triggered a variety of antimicrobial defense mechanisms, including phagosome-lysosome fusion, and autophagy. These effects were associated with activation of transcription factor EB, involved in the transcription of lysosomal genes, resulting in enhanced intracellular killing of different bacterial species that were naturally insensitive to BDQ. Thus, BDQ could be used as a host-directed therapy against a wide range of bacterial infections.


The discovery of antibiotic drugs, which treat diseases caused by bacteria, has been a hugely valuable advance in modern medicine. They work by targeting specific cellular processes in bacteria, ultimately stopping them from multiplying or killing them outright. Antibiotics sometimes also affect their human hosts and can cause side-effects, such as gut problems or skin reactions. Recent evidence suggests that antibiotics also have an impact on the human immune system. This may happen either indirectly, by affecting 'friendly' bacteria normally present in the body, or through direct effects on immune cells. In turn, this could change the effectiveness of drug treatments. For example, if an antibiotic weakens immune cells, the body could have difficulty fighting off the existing infection ­ or become more vulnerable to new ones. However, even though new drugs are being introduced to combat the worldwide rise of antibiotic-resistant bacteria, their effects on immunity are still not well understood. For example, bedaquiline is an antibiotic recently developed to treat tuberculosis infections that are resistant to several drugs. Giraud-Gatineau et al. wanted to determine if bedaquiline altered the human immune response to bacterial infection independently from its direct anti-microbial effects. Macrophages engulf foreign particles like bacteria and break them down using enzymes stored within small internal compartments, or 'lysosomes'. Initial experiments using human macrophages, grown both with and without bedaquiline, showed that the drug did not harm the cells and that they grew normally. A combination of microscope imaging and genetic analysis revealed that exposure to bedaquiline not only increased the number of lysosomes within macrophage cells, but also the activity of genes and proteins that increase lysosomes' ability to break down foreign particles. These results suggested that bedaquiline treatment might make macrophages better at fighting infection, even if the drug itself had no direct effect on bacterial cells. Further studies, where macrophages were first treated with bedaquiline and then exposed to different types of bacteria known to be resistant to the drug, confirmed this hypothesis: in every case, the treated macrophages became efficient bacterial killers. In contrast, older anti-tuberculosis drugs did not have any such potentiating effect on the macrophages. This work sheds new light on our how antibiotic drugs can interact with the cells of the human immune system, and can sometimes even boost our innate defences. Such immune-boosting effects could one day be exploited to make more effective treatments against bacterial infections.


Assuntos
Antibacterianos/farmacologia , Diarilquinolinas/farmacologia , Imunidade Inata/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia
3.
J Nanobiotechnology ; 17(1): 15, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683129

RESUMO

BACKGROUND: Infectious diseases are still a leading cause of death and, with the emergence of drug resistance, pose a great threat to human health. New drugs and strategies are thus urgently needed to improve treatment efficacy and limit drug-associated side effects. Nanotechnology-based drug delivery systems are promising approaches, offering hope in the fight against drug resistant bacteria. However, how nanocarriers influence the response of innate immune cells to bacterial infection is mostly unknown. RESULTS: Here, we used Mycobacterium tuberculosis as a model of bacterial infection to examine the impact of mannose functionalization of chitosan nanocarriers (CS-NCs) on the human macrophage response. Both ungrafted and grafted CS-NCs were similarly internalized by macrophages, via an actin cytoskeleton-dependent process. Although tri-mannose ligands did not modify the capacity of CS-NCs to escape lysosomal degradation, they profoundly remodeled the response of M. tuberculosis-infected macrophages. mRNA sequencing showed nearly 900 genes to be differentially expressed due to tri-mannose grafting. Unexpectedly, the set of modulated genes was enriched for pathways involved in cell metabolism, particularly oxidative phosphorylation and sugar metabolism. CONCLUSIONS: The ability to modulate cell metabolism by grafting ligands at the surface of nanoparticles may thus be a promising strategy to reprogram immune cells and improve the efficacy of encapsulated drugs.


Assuntos
Infecções Bacterianas/imunologia , Quitosana/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Manose/química , Infecções Bacterianas/microbiologia , Células Cultivadas , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Nanopartículas/química , Nanopartículas/metabolismo , Fagocitose , Transcriptoma/efeitos dos fármacos
4.
J Immunol ; 195(4): 1628-36, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26163587

RESUMO

The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N). In this study, we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other's microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-B(N)-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-B(N) were able to interact in solution (Kd = 0.4 µM), which enabled their binding to bacteria with which SP-A or SP-B(N) alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-B(N) conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-B(N)-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-B(N) 6 or 24 h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections.


Assuntos
Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Ligação Proteica , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/farmacologia , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
5.
Proc Natl Acad Sci U S A ; 108(31): 12764-9, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768366

RESUMO

p38α MAPK is an important regulator of cellular responses induced by external cues, but the elucidation of physiological functions for p38α has been complicated by the possible functional redundancy in vivo with the related family member p38ß. We found that mice with combined deletion of p38α and p38ß display diverse developmental defects at midgestation, including major cardiovascular abnormalities, which are observed neither in single knockout nor in double heterozygous embryos. Expression analysis indicates specific functions of p38α and p38ß in the regulation of cardiac gene expression during development. By using knock-in animals that express p38ß under control of the endogenous p38α promoter, we also found that p38ß cannot perform all of the functions of p38α during embryogenesis. Our results identify essential roles for p38α and p38ß during development and suggest that some specific functions may be explained by differences in expression patterns.


Assuntos
Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Apoptose/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...